

AFCI Fuel Development Update: Metallic Fuel & Irradiation Testing

D. C. Crawford

Argonne National Laboratory-West Idaho Falls, ID

Outline

- Review of Issues
- Fabrication of Metal Fuel for AFC-1
- Characterization (results to date)
 - Pu-60Zr
 - Pu-40Zr
 - Pu-12Am-40Zr
- Irradiation Testing
- Summary

Fuel Issues Associated with Transmutation

Fuel performance

- High He generation rate during (and after) irradiation due to Am-241 and Cm-244
- Am transport during irradiation
- Actinide compatibility with cladding
- Formation of low-melting-temperature phases

Fabrication and fuel recycle

- Compatibility with remote fuel recycle (incl process complexity concerns
- Loss goal < 0.1% during refabrication
- Volatility of Am during thermal processing
- Cm is hard to handle, high α -decay heat

Inert Matrix (Zr) and Actinide (Pu,Np,Am) Single Element Phases Pioneering Scient

Pioneering Science and Technology

Im3m (bcc)	ε-Pu 483°C	γ -Np 576°C	γ -Am 1077°C	β-Zr 863°C
Fm3m (fcc)	δ-Pu 320°C	-	β -Am 769°C	-
P6 ₃ /mmc (hcp)	-	-	α -Am	α -Zr
Fddd	γ-Pu	_	-	-
P42 ₁ 2	-	β -Np	-	-
Pnma	-	α -Np	_	_

Fuel Fabrication Challenges

Pioneering Science and Technology

Phase Relations in Metallic Systems

Pu-Zr documented

Pu-Am documented in Pu rich region

Pu-Np documented

Np-Zr limited data (conflicting results)

Np-Am limited data

Am-Zr no data

Pu-Np-Am limited theoretical

Pu-Np-Zr no data

Pu-Am-Zr no data

Np-Am-Zr no data

Pu-Np-Am-Zr no data

Pu-Zr Based Metallic Alloys

Pioneering Science and Technology

Pu-Zr based fuels for irradiation testing in AFC-1

- Pu-40Zr
- Pu-Am-40Zr
- Pu-Am-Np-40Zr
- Pu-Np-40Zr

• Pu-60Zr

Binary Alloy Phase Diagrams 2nd ed. Vol. 3 Ed. T.B. Massalski, ASM Int'l (1990)

Powder Metallurgy Route to Pu-Zr

Pioneering Science and Technology

- Developed as low temperature fabrication route to prevent Am loss
 - Hot pressing
- Inhomogeneous microstructure after processing at ~ 800°C
- High impurity content
- Complex process impractical remote process scale-up
 - Powder handling
 - Material loss
 - Time

Arc Melting to Cast Fuel

Pioneering Science and Technology

- Simple process
- Short melt times at high temperature
 - Total melt times < 60 seconds
 - Temperature > 2000°C
- Good alloy homogeneity
- Low americium loss

Americium Loss Data

- Results from arccasting Pu-Am-Zr and Pu-Am-Np-Zr
- Other rapid melting techniques such as induction skull melting (ISM) can also have melt cycle times on the order of 60 seconds
- Am loss during fabrication is not a critical issue for metal fuel

Pu-60Zr

- As-cast microstructure lowest fuel fabrication cost
- SEM images show multi-phase structure
 - Matrix, acicular phase
 - Grain boundaries decorated with second phase(s)
- Measured density = 8.5 g/cm³

As-cast Pu-60Zr

- Chemistry differences between acicular phase and matrix phase cannot be resolved using SEM/EDS
- EDS indicates that grain boundary phase is plutonium depleted and oxygen rich
- Uniform distribution of zirconium
- Similar phase in U-20Pu-10Zr

Pu-60Zr XRD

Pu-60Zr Thermal Analysis

Pioneering Science and Technology

DTA shows repeatable transformation α -Zr + δ-Pu \longrightarrow ε-Pu, β-Zr solid solution Oxidation prevents further interpretation

Pu-40Zr

Pu-40Zr

- Single phase alloy
- **SEM/EDS** shows uniform distribution of Pu-Zr
- Some porosity present in as-cast microstructure
- Measured density = 10.1 g/cm³

Pu-40Zr XRD

Pu-40Zr Thermal Analysis

Pioneering Science and Technology

DTA shows repeatable transformation δ -Pu (fcc) \longrightarrow ε-Pu, β-Zr (bcc) ~625°C

Pioneering Science and Technology

- Wide region of δ -Pu, β -Am (fcc) stability
- Am increases binary alloy solidus temperature

Pu-12Am-40Zr

- SEM/EDS shows a single phase alloy with a uniform distribution of Pu, Am, and Zr
- Measured density
- $= 9.9 \text{ g/cm}^3$

Pu-12Am-40Zr XRD

Pu-12Am-40Zr Thermal Analysis

Pioneering Science and Technology

Higher transition temperature (~700°C) relative to Pu-40Zr (~625°C) may indicate expansion of the δ -Pu phase field in Am-bearing alloy

Processing, Chemical and Physical Characteristics for Pu-Np-Zr samples

		nposi Wt. %		Number o	of Melts	Average	Theoretical		
Pin Number	Pu	Np	Zr	Homo- genization Castin		Density g/cm3	Density* g/cm3		
MB008	49.8	8.8	40.4	5	2	10.33	10.82		
MB010	50.3	7.9	41.6	7	3	10.27	10.72		

^{*} each composition contains ~0.2 wt.% Am and assumes ideal solution behavior

Pu-40Zr

Pu-10Np-40Zr

Pu-40Zr edge

Pu-10Np-40Zr edge

Pu-40Zr

Pu-10Np-40Zr

Pu-10Np-40Zr Pu-40Zr

X-ray Maps of As-Cast Pu-10Np-40Zr

Backscatter Image

X-ray Maps of As-Cast Pu-10Np-40Zr

Backscatter Image

Oxygen

Powder XRD for Pu-10Np-40Zr

Pioneering Science and Technology

 δ - $(Pu_{1-x}Np_x)Zr$: a = 4.565 Å δ - $(Pu_{1-x}Np_x)Zr_2$: a = 5.055 Å, c = 3.123 Å

Thermal analysis

Thermal analysis

Proposed Np-Zr Phase Diagrams

Pioneering Science and Technology

AFC-1 Test Series Schedule

Pioneering Science and Technology

- Current AFC-1 Test Series Schedule
 - Likely delay of A-D due to basket and INEEL funding
 - Likely delay of E-H due to INEEL funding
 - ATR CIC scheduled for Feb-04, but slight delay is possible

		IRRADIATION TEST DURATION													
		2002		2003							2004				
Test	Fuel Types	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	JAN
AFC-1A	Non-Fertile Nitride														
AFC-1B	Non-Fertile Metal														
AFC-1C	Non-Fertile Nitride														
AFC-1D	Non-Fertile Metal														
AFC-1E	Low-Fertile Nitride														
AFC-1F	Low-Fertile Metal														
AFC-1G	Low-Fertile Nitride														
AFC-1H	Low-Fertile Metal														

AFC-1A, -1B, -1C and -1D Fuel Test Matrix

- Six vertically-stacked rodlets per irradiation vehicle
- Low smear density, Na-bonded fuels to allow for swelling

	EXPERIMENT						
Rodlet	ATW-1A & -1C	ATW-1B & -1D					
1	(Pu _{0.2} ,Am _{0.8})N-36ZrN	Pu-12Am-40Zr					
2	(Pu _{0.8} ,Am _{0.2})N-36ZrN	Pu-10Am-10Np-40Zr					
3	(Pu _{0.5} ,Np _{0.5})N-36ZrN	Pu-40Zr					
4	PuN-36ZrN	Pu-12Am-40Zr					
5	(Pu _{0.50} ,Am _{0.25} ,Np _{0.25})N-36ZrN	Pu-10Np-40Zr					
6	(Pu _{0.5} ,Am _{0.5})N-36ZrN	Pu-60Zr					

AFC-1 Rodlet Design

AFC-1 Capsule Design

FUTURIX Irradiation Experiment

Pioneering Science and Technology

International collaboration between DOE and CEA

- Collaboration in final stages of being formalized
- Irradiation scheduled to begin in April 2006
- Irradiation for 2 cycles (240 EFPD's) prior to Phénix termination
- Discharge burnups ~8%; Am-241 transmutation >20%

Experiment design

- Will employ standard Phénix stainless steel cladding
- Experimental fuel pin design (10 cm fuel column; large gas plena)
- 8 test pins incorporated into 19-pin experimental subassembly
- Fuels fabricated at ANL, LANL, CEA and ITU
- Fuels encapsulated into pins at ITU
- Experimental subassembly assembled at CEA

FUTURIX Irradiation Experiment (2)

FUTURIX fuel test matrix

- Test revised to include non-fertile and low-fertile compositions
- 2 metallic alloy fuels (Na-bonded) - ANL to fabricate
- 2 nitride fuels (Na-bonded) LANL to fabricate
- 2 non-fertile oxide fuels (He-bonded) **CEA** to fabricate
- 1 fertile oxide; 1 cermet fuel - ITU to fabricate

FY-03 activities

- Finalize experiment design; submit Presentation Report
- Fabrication facility preparation
- Begin R&D phase on test fuels
 - » Establish test fuel fabrication process
 - » Characterize test fuel compositions
 - » QA Plan to be developed and approved

FUTURIX Irradiation Experiment (3)

- Future U.S. Deliverables & Milestones
 - Input to Technical Report due April-04
 - Report on R&D Phase due Jun-04
 - Fuel Specification/Fabrication Control Plan due Sept-04
 - Fuel Fabrication complete Jun-05; Fabrication Report due Jun-05
 - Fuel Delivery to ITU in Jul-05
 - Input to Safety Report due Aug-05
- Irradiation Begins April 2006
- Irradiation Ends February 2008
- PIE Complete with Final Data Exchange by October 2010

Summary

- AFC-1
 - fabrication mostly on schedule, with some minor issues to resolve
 - Basket problem being addressed by INEEL
 - CR funding for INEEL is an issue that can impact schedule
- **Futurix**
 - Schedule for preparation of experiment discussed in detail at DOE/CEA mtg on Jan 14, 15 and agreed upon
 - Some urgency is nearing for contract/agreement
- Series of Pu-Zr based alloys fabricated for AFC-1 irradiation test
 - Alloys have been encapsulated with Na in cladding tubes
 - Awaiting irradiation beginning in March 2003
- Powder processing did not produce desired product
- Arc casting worked well
 - Low americium loss due to short melt times
 - Good alloy homogeneity
 - Other processes possible for large-scale fabrication
 - Americium loss not an issue

Summary (cont.)

- Alloy characterization (results to date)
 - Pu-60Zr: α -Zr by XRD
 - Pu-40Zr: single phase δ -Pu
 - Pu-12Am-40Zr
 - » First data on this ternary alloy
 - » Single-phase δ -Pu
 - Pu-10Np-10Zr
 - » First data on this ternary alloy
 - » Two-phase fcc δ -(Pu,Np)Zr and hexagonal δ -(Pu,Np)Zr₂
 - » Oxygen impurities appear to have influenced microstructure
 - » Initial thermal analysis results are inconclusive regarding formation of low-melting-temperature phases
 - » Continued characterization to include TMA/dilatometry and high-temp x-ray diffraction studies
 - » Proceeding to obtain quality Np feedstock

Review and Conclusions

Pioneering Science and Technology

- Modified arc-melting technique acceptable for fabrication of experimental fuel pins and characterization samples.
- As-cast products in the "Pu-10Np-40Zr" regime identified as the fcc δ -(Pu_{1-x}Np_x)Zr solid solution and the hexagonal δ -(Pu_{1-x}Np_x)Zr₂ phase domain. Pu-40Zr only fcc δ -PuZr.
- Oxygen impurities in feedstock charge may have and are suggested to have influenced products formed.
- Preliminary thermal analysis studies inconclusive as to melting behavior due to severe oxidation of sample.
- Continuing with thermal characterization to include thermomechanical/dilatometry and high temperature XRD studies.
- Proceeding to procure and/or purify quality Np feedstock.

